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Complex Kohn variational principle is applied to the numerical
solution of the fully off-shell Lippmann-Schwinger equation for
nucleon—nucleon scattering for various partial waves including the
coupled ¥5,-3D, channel. Analytic expressions are obtained for all
the integrals in the method for a suitable choice of expansion func-
tions. Calculations with the partial waves 'S, 'P,, '0,, and 5,-3D,
of the Reid soft core potential show that the method converges
faster than other solution schemes not anly for the phase shift but
also for the off-shell t matrix elements. We also show that itis trivial
to modify this variational principle in order to make it suitable for
bound-state calculation. The bound-state approach is illustrated for
the ?5,-*D, channel of the Reid soft-core potential for calculating
the deuteron binding, wave function, and the D state asymptotic
parameters, ® 1095 Academic Press, Inc.

I. INTRODUCTION

Variational principles (v.p.’s) have frequently been success-
fully applied to the solution of guantum scattering problems
[1-8]. Most of the commonly used v.p.’s are either of the
Schwinger [I] or of the Kohn [2] type. There are also less
frequently used higher order v.p.’s (4]. The Schwinger type
v.p.'s are usually applied to the solution of the momentum
space Lippmann—Schwinger equation [91 which generate the
oll=shell ¢ matnix elements in addition (o the phase shilts,
whereas the Kolm type v.p.'s are usually applied (o the calcula-
tion ol the phase shills via the configuration space Sclrdd-
inger equation.

The usual Kohn v.p., unlike the Schwinger and the higher
order v.p.’s, does not require the calculation of integrals involv-
ing the free Green function and numerically is the simplest of
all available v.p."s. The Kohn v.p. for the on-shell K matrix
elements requires triaf functions satisfying scattering boundary
conditions. It was noted by Schwartz [10] that the K matrix
calculated by the Kohn v.p. occasionally exhibits anomalous
singularities in the scattering region. This fact has limited sig-
nificantly the use of the Kohn v.p.. The schwinger v.p. [1], on
the other hand, requires the tedious evaluation of integrals
involving the free Green function. The advantage of the Koha
v.p. over the Schwinger v.p. in having simple integrals to deal

with is more than olfset by the presence of anomatous singulari-
tics in the Koha v.p. [10].

As an attempt to maintain the above advantages of the Kohn
method and reduce the troubles associated with the anomalous
singularities, it has receatly been suggested that by choosing
the complex boundary conditions for the Green function the
Kohn v.p. readily yields the complex ¢ matrix elements [}1,
12]. 1t was first claimed that this so-called complex Kohn v.p.
does not present anomalous singularities. [11] However, later
it has been demonstrated in two different studies [ 13} that in the
complex Kohn v.p. the anomalous singularities could appear.
However, these singularities are extremely rare. It should be
noted that the Schwinger variational method itseif can also
have anomalous singularities in cases where the complex Kohn
method is free of them |14]. Also, it has been demonstrated
that the complex Kohn v.p. may lead to a rapid convergence,
compared to Schwinger and other type v.p.’s for different prob-
lems in atomic physics [11, 12].

We show how the ideas behind the complex Kohn v.p. could
be modified to lead to an efficient method for the bound state
problem (including the coupled angular momentum states) for
calculating the binding energy, bound state wave functions,
and the asymptotic normalization parameters for the bound
stile wave Tunction,

The complex Kohn v.p, has seen extensive application 1o
molecular problems, including both electron—molecule scatter-
ing and chemically reactive molecular collisions [ 15]. In both of
these applications the problems are inherently many channeled
including many partial waves and several electronic states in
the case of electron—molecule scattering and including many
target rotational—vibrational states in the case of reactive molec-
ular collisions. In the present work we test the complex Kohn
v.p. for nucleon—nucleon scattering with *‘realistic’” Reid po-
tentials [16] in various angular momentum states possessing a
soft core, where precision calculations have been performed
with other methods [4, 5, 8, 16, 17]. This will allow us to
compare the results of the complex Kohn v.p. with other meth-
ods. Accurate numerical solutions of this problem are of interest
to a variety of research problems, such as, the two- and the
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COMPLEX KOHN VARIATIONAL PRINCIPLE

three-nucleon bound-state and scattering studies, including their
photo- and electro-desintegration,

Here we develop the necessary medifications of the complex
Kohn v.p. to include coupling between different angular mo-
mentum states in the presence of the tensor force of the nu-
cleon-nucleon system. The present generalization not only
allows us to calculate the phase-shifts and mixing parameters
in the coupled 3$,—*D, channel, but also the momentum-space
off-shell ¢ matrix elements. Usually, the Kohn v.p. is used for
calculating the phase shifts in the configuration space in the
absence of angular momentum coupling. This is the first appli-
cation of the complex Kohn v.p. to the calculation of phase
shifts, off-shell r matrix elements, and the bound-state observ-
ables for coupled angular momentum states, We study here
the 'S, 'Py, 'Dy, and 35,-°D, channels of nucleon—nucleon
scattering using the Reid soft-core potentials [16].

For the *S,—*D, channel we used the Peiper’s modification
[17] of the Reid potential. This potential has simple analytic
forms and, hence, the integrals of this method are evaluated
analytically. So the only numerical task is the inversion of a
relatively small matrix and matrix vector multiplication. We
are using this potential [16] for its simplicity; otherwise the
numerical difficulties encountered (with the soft core) in this
potential are the same as in other meson theoretic potentials.
We found excelient convergence in all the partial waves studied,
including the coupled *§,—*D, state. This should motivate the
use of this method to the solution of the nucleon—nucleon
scatteting and bound-state problems with other realistic poten-
tials and to the solution of other realistic few-nucleon scattering
problems, However, in other realistic situations one may have
to evaluate the integrals of the method numerically.

Because of the presence of the soft core, these realistic poten-
tials are difficult to deal with both in configuration and momen-
tum spaces. There are difficulties with the configuration space
integration for small r. In a momentum space treatment the
momentum space infinite integrals are discretized for em-
ploying a momentum space mesh which extends to a very large
value of momentum, which is difficult to deal with numerically.
This problem is extremely acute in the physically interesting
*$\—*D, channel in the presence of the soft core. Hence the
study of the nucleon—nucleon scattering and bound-state prob-
lems with Reid soft-core potentials in this channel should pro-
vide a stringent test for the applicability of the complex Kohn
v.p. to other problems of nuclear physics.

We find that for these partial waves of the nucleon—nucleon
systemn, the complex Kohn v.p. produces excellent convergence
for the phase shifts, the mixing parameters of the coupled
angular momentum states, the off-shell s matrix elements, and
binding energy and bound-state wave functions. The possibility
of the accidental appearance of anomalous singularities seems
to have no relevance to the usefulness of this method. In this
problem, the final convergence is far better than that obtained
with the Schwinger v.p.

The plan of the paper is as follows. In Section I1 we present
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the complex Kohn v.p. for the scatiering problem and show
how it could be applied to the bound-state problem. In Section
Il we present the explicit momentum space matrix elements
and their analytic results for the Yukawa potential. In Section
IV we present the numerical results for the nucleon-nucleon
bound-state and scattering problems. Finally, in Section V we
present a brief summary.

I1. COMPLEX KOHN VARIATIONAL PRINCIPLE

The Lippmann—Schwinger [9] equation is written in the oper-
ator form

HE) =V + VGSAEE), (2.1)

where ¢ is the transition matix, V is the potential, and

G{'KE)y = (E ~ H, + i0)! is the free Green function at the

center of mass {c.m.) energy E, with H; the free Hamiltonian,

The explicit momentum-space partial-wave Lippmann—
Schwinger equation for central potentials is given by

Ul’;(p’; q)tL( % P, E)
B—-g+i0

: . 2 (=
wp'sp, Ey=uvdp',p) +;J0 q’dq . (2.2)

where m is the reduced mass, v = 2mV/A?, [ is the angular
momentum label, and &* = 2mE/f* with k the on-shell momen-
tum. For coupled angular momentum channels the generaliza-
tion of the above partial-wave Lippmann—Schwinger equa-
tion is

telp' . p, EY=v.(p".p)
25 (- vee(p', @l g, p, E)
4= 2 L'l L .
n';joqdq B —g*+i0

(2.3)

For the nucleon—nucleon problem one has an equation of type
(2.3) in the presence of tensor potential for the coupled angular
momentum siates °§,—*D,. With this definition, the phase-shift
&, in the uncoupled channel is defined by

2% gin &,

1k k EYy=— P

(2.4)

The on-shell § matrix is defined in terms of the fully on-shell
¢ matrix by

Spilk, ks EY = 8pp — 2aktplk, k, ED. 2.5)

In the coupled *§,—*D, channel we use the Stapp parametriza-

tion [18] of the § matrix to define the nuclear bar phase-shifts

(6.) and mixing parameters (g,). The Stapp parametrization is
defined by



202 DE ARAUJO, ADHIKAR!, AND TOMIO

_ ( cos 2&,e%%-1

i )

I sin 2g,e"%-170%-1 26
cos 2&,e%%m, 2.6)

isin2g e
Here J is the total angular momentum, so that the orbital angular
momenta are (J = 1). It is to be noted that there is also another
parametrization of the S matrix due to Blatt and Biedenharn
[19]. '

The complex Kohn v.p. for the on-shell £ or § matrix elements
for uncoupled channels could easily be extended to include
angular momentum coupled channels and off-shell + matrix
elements. This is conveniently done by considering the complex
Kohn v.p. as the degenerate kernel solution of Eq. (2.1} with
the degenerate approximation to the free Green function G§"
(&) [11],

N
[GSHE)]y = E. |etod Doty Q2.7

nj=
where

(D7 = (HE — Holua), (2.8)
where u;, j = 1, 2, ..., N, is a set of arbitrary chosen functions.
For numerical calculation, Eq. (2.7) is to be interpreted as one
in the partial wave form. These functions should satisfy the
small and large » behavior of the partial-wave configuration
space free Green function in order that the approximation given
by Eq. (2.7) is a good one. The configuration space matrix
elements of Eq. (2.7) for angular momentom L should satisfy
the asymptotic behavior of the partial-wave free Green function:

G, r', E) = ikjulkr JhT(kr ), (2.9)
where j, and A" are the usual spherical Bessel and Hankel
functions, and r., (r.) is the larger (smaller) of r and r'. Equation
(2.9) is symmetric in r and r’ and satisfies the following condi-
tions for small and large r for a fixed r':

ikr

lim G, ', E) = € x function(r’), E = A%/ (2m) >0,
r—sme r

(2.10)
-gr
lim Gl v, E) = £ _ X function(r'), E = 2B (2m) < 0,
rosm r
@.11)
lim Gi\(r, ¥', E) = r* X function(r'). (2.12)
r—{

In the bound-state problem #28%/(2m) is the binding energy. A
similar set of equations exist for the roles of r and r' inter-
changed in Egs. (2.10)-(2.12).

The approximate degenerate Green function of Eq. (2.7) can
be easily made to satisfy the boundary conditions (2.10)—(2.12),

provided that the function wu,(r) = {u|r) = {r|u,) is taken to
satisfy [11]

ikr

lim sy (r) — f"; (2.13)
for scattering, and
. e ?
lim tyy(r) — 2.14)
for bound states, as well as
lln(;l ulm(r) —rt (2 1 5)

for both scattering and bound states.
The remaining functions u,(r) = {w|r) = {rlu), j > 1, are
taken to satisfy

lim uj([_)(r) — 0, (2 1 6)
lim wy(r) = 1™ @2.17)
r—0

It is to be noted that in order to satisfy the boundary conditions
for scattering, {(u;|r) and (r|u;) are taken to be equal and not
complex conjugates of each other. We consider the following
simple set of functions satisfying these conditions:

wl(r) = %kr(l —e )t (2.18)
for scattering and
) = 2 (1 = e (2.19)
" for bound state, and
w () = rke U j =23 ., N, (2.20)

for both scattering and bound state. Here the variational parame-
ter e is to be adjusted numerically to obtain the best conver-
gence. It is obvious that this is not the only possible choice for
the functions u; there could be many other choices. The objec-
tive of this work is not to exhaust all possibilities, but to see if
this simple choice provides good convergence for the nucleon—
nucleon scattering and bound-state problems involving tensor
potential and a soft core.

When degenerate (separable) approximation (2.7) is used in
the Lippmann-Schwinger equation (2.1), it yields the solu-
tion [11]
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N
WEY=V+ 2 V]add, (v, (2.21)
j=1

nj=
where

U™ = (GlE = Hy — V)lu,). (2.22)
This is the desired complex Kohn v.p. for the r matrix. The
variational property of the on-shell version of Eq. (2.21) has
been established before [11]. The same variational property
also holds for the off-shell version of this equation. As in the
usual real Kohn v.p. in order to evaluate the ¢ matrix via. Egs.
(2.21) and (2.22) one does not require integrals involving the
Green function.

Equations (2.21) and (2.22) are sutiable for scattering calcula-
tion. For bound-state caiculation it is more convenient to con-
sider only the full Green function G(E) = (E — H)™! with the
degenerate approximation (2.7) for the free Green function.
This yields in coordinate space the approximation

N
Gu(r, r';E) = 2. (| |, (2.23)

ni=

with J,; given by Eq. (2.22). At the bound-state energy, the
miatrix J "' has determinant zero. This condition of zero determi-
nant determines the binding energy. This bound-state condition
which results from the Kohn method is the standard Rayleigh—
Ritz variational method [3). However, in order to determine
the bound-state wave function in the Rayleigh—Ritz method
one has to solve an eigenfunction—eigenvalue problem. Tn the
present case the bound-state wave function, :(r), is obtained
from the residue of the Green function, G(E), at the bound-
state pole, which has the following behavior:

P(r)ul(r’)

o Gl 7 B) = 5 R amy’

(2.24)

ki
For large N, Gy(E) of Eq. (2.23) is expected to satisfy the
limiting behavior (2.24). Hence, the residue of Gy(r, r', E) of
Eq. (2.23) at the bound-state pole for large N yields the bound-
state wave function. We shall use this simple modification of
the complex Kohn method for the calculation of the deuteron
binding energy, bound-state wave function, and asymptotic
parameters for the wave function,

III. EXPLICIT MATRIX ELEMENTS

One reason for choosing the expansion functions (2.18)-
(2.20) is that for the commonly used Yukawa and exponential
potentials all the matrix elements needed in the numerical evalu-
ation of the # matrix elements can then be evaluated analytically.
The Reid potentials that we shall use are expressed in terms
of linear combinations of Yukawa potentials. Consequently,
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with the expansion functions (2.18)—(2.20} the only numerical
task is the evaluation of an analytically known matrix and
simple matrix vector multiplication.

The explicit matrix elements of the f matrix (2.21) 1s given by

Llp.p Ey=vp(p,p)

+ 2 <p1Lr‘UL'U|unL") Jn!.'.fL"(“jL"lUL"LI pL},

k" i

(3.1)

with

@ LL+1)
[+ - 2220)

Uptt } .

In the case of a central potential v,.(p’, p) = Spwi(p', p) and
Eq. (3.1) simplifies to its diagonal form:

(J ~1)j.L"’,nL"' = <Hj1,"'
(3.2)

By — UL"L"]

u(p'. p, EyY=uvp' p)
+ ;L<p’lequnL)JHLI-Au,-LIvL!pL). (3.3)
Ak, ),

The potential v used in the present calculation has the gen-
eral form

v(ry = velr) + vr(r)S); + vis(r)LS, (3.4)
with
5o =3 IRED (4, g, (3.5)

where o, &, are usnal Pauli spin operators for the two parti-
cles. The form (3.4) is applicable for the 3$,—*D, channel in
the presence of the tensor (U+{r)) and spin-orbit (v, 5(r)) interac-
tions. In the *$,—'D, channel vy = v¢, U, = U = V8v7, and
Un = Ve — 20y — 3v;s. In the case of other potentials considered
here, however, one has p(r) = v(r) = 0.

The $,—*D, potential used in this study is Pieper’s simplifi-
cation [17] of the Reid soft-core (RSC) potential, referred to
as the simplified Reid soft-core (SRSC) potential. Pieper writes
the Reid soft-core potential for this channel as a linear combina-
tion of Yukawa potentials which can be easily handled numeri-
cally. Otherwise, numerically, the RSC potential is indistin-
guishable from the SRSC potential, and se are the two-nucleon
observables of these two potentials.

For the sake of completeness we provide here the potentials
used in this study. Explicitly, all the potentials have the form
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M
Viry= 2 Virler, (3.6)

For the 'S, RSC potential M = 3 and V|, = —10.463/0.7
MeV fm, V, = —1650.6/0.7 MeV fm, V; = 6484.2/0.7 MeV
fm, o, = 0.7 fm™Y, w; = 4y, and g3 = Ty,.

For the 35,—*D, SRSC potential M = 4 for each of V¢, Vr,
and V. For Vi, V|, = —10.463/0.7 MeV fm, V, = 105.468/
0.7 MeV fm, V; = —3187.8/0.7 MeV fm, and V, = 9924.3/
0.7 MeV fm; for Vo, V, = —18.5488/0.7 MeV fm, V, =
—109.307/0.7 MeV fm, V; = 210.503/0.7 MeV fm, V, =
—1650.35/0.7 MeV fm; and for V5, V, = V, = 0, V, = 708.91/
0.7 MeV fm, V, = —2713.1/0.7 MeV fm. In all cases w, =
0.7 fm™, wy = 2y, 13 = 4, and w. = 6u,.

For the 'P, RSC potential M = 3, V| = 31.399/0.7 MeV
fm, V, = —634.39/0.7 MeV fm, V; = 2163.4/0.7 MeV fim,
= 0.7 fm™, wo = 20, ps = 3p.

DE ARAUJO, ADHIKARI, AND TOMIO

The matrix elements of Eqs. (3.1)-(3.2) are explicitly writ-
ten as

-1 ® - d LL+1)
e

Opmer — Um:(f‘)J [rie,,] dr,

3.7

(PL‘VLL*W::L') = (Uanle'Lipl—) = j: (70 (1) ju pryet dr,
{3.8)

Vie(p, @) = Virlg p) = | iprVnjitanrtdr. (3.9)

Next we provide the explicit momentum space matrix elements
for the following Yukawa potential

For the 'D, RSC potential M = 4 and V, = —10.463/0.7 e 0
MeV fm, V, = —12.322/0.7 MeV fm, V, = —1112.6/0.7 MeV v(r) = vy (3.10)
fm, V, = 6484.2/0.7 MeV fm, g, = 0.7 fm ™!, gy = 2u;,

@y = 4y, and gy = T, In this case
_ ﬁ l“:‘2 + p2 + qz
vu(p. q) 2pd o, [—zpq , (3.11)
vl p, 4) = vl g, p) = [Qz (q i ’”‘) + Q2( "“)] (3.12)
' '  2pq r p /T
d? LL+1) L (—Dick
g 2 C— N=8.| -2 NV __ N A eE
<“”‘ [(k T ) o v“} “‘L> ou [ LA S a2k
2042
— KL+ 1) Y (—1)C* jo — 2ik] In[ jo — 2ik]] (3.13)
=
L+L+2
+ 0, (= DYCHE 2 n(y + jo — 2ik),
i=0
d* L+ 1 4 L+ 1
<unL [(kz + ﬁ d 2 )) Sy — LL’:' Mw> _< [(k2 +0= dr 2 C o )) O — ULL'] un!_>
(3.14)
L+1 . .
((n — Da)* + 2eln — I{of — ik) — K
= — 8L+ 1) 1yiciH
1 )E( ) [a(n + j — 1) — k]
L'+1
— Llvg > (= DICE [ + el + j — 1) — ik]™44D,
J=0
d*  L{L+1) ) 202 — (n— D(m — DAL+ 1)
<H,,L |:(k2 + F - T) 5,4_,_- — ULL'] leL!> = (L + L'+ 1)1 [ [a(m +n— 2)]2L+3 SLL’
(3.15)
Ulan + m — 2) + p)HEE)
L \/E LE+1)
{pLlvulu.) = v r(v2) (3.16)

"9+ {u + aln — P
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. 3adn— D+ pl—p

{pOlvoalun) = 2vg i+ ot = DR (3.17)

w2 H 3wt an— DP 3lu+aln— 1) ( p )]

{P2|vaelttro) E[ o u o= DF " acan | T n) |’
(3.18)

Lt ly, LI H ;
(pL‘ULL'|u1L'> =1 PUn Z (—])ij‘+]QL [H—l(};i’%)] 3.19)
i=0

In these equations CY = MY[ji(M — j!], Q. is the usual
Legendre function of second kind. The above equations are
valid for scattering calculation for L, L' = 0, 1, 2. For bound-
state calculation one should change & — i in these equations.

IV. NUMERICAL RESULTS

in order to see how the complex Kohn v.p. works in practice,
we performed numerical calculations with the semiphenomeno-
logical 'Sy, 'P,, and 'D, RSC and 3S;-*D, SRSC potentials
defined in the last section. These potentials have the realistic
soft core and one pion exchange tail numerically built in. These
potentials are used in actual few-nucleon calculations and their
numerical treatment is known to lead to all complications of a
realistic meson-theoretic potential. So if we can demonstrate
good convergence with these potentials, especially in the *$,—
D, channel, one could be assured of good convergence in
other cases.

The parameter e in the expansion functions is supposed to
be varied in order to improve the convergence. The convergence
was good for a wide range of values of «. Although a specific
value of « leads to an excellent convergence for a specific
case—energy and potential—we decided to choose one particu-
lar «¢ for all possible energies and potentials. The value finally
chosen after some experimentation is @ = 1.15 fm™' both for
scattering and bound-state studies in all partial waves. We also
employ A*/(2m) = 41.47 MeV fm’.

The approximate r matrices of Eqgs. (3.1) and (3.2} do not,
however, satisfy the constraints of unitarity. Hence, the § matrix
constructed with them via Egs. (2.5) and {2.6) is not unitary
and the phase-shifts are complex. The real part of these phase
shifts defined by

(4.1)

will be considered as the phase-shift of the variational # matrix.
The violation of unitarity is small for large N and is insignificant
in the converged result.

In Table I we present the elastic scaitering phase-shifts &,
and the mixing parameter &, at various energies for different

values of N. The calculation with a specific value N of N for
the uncoupled channel means that the first N functions of the
set (2.18)—(2.20) has been used. This leads to a matrix J of
dimension N, For the coupled 35,-3D, channel it means that
the first N functions of the set (2.18)—(2.20) have been used
for both L = 0 and L = 2. Consequently, this leads to a matrix
J of dimension 2N,

From Table I we see that the phase-shifts converge rapidly
in all cases including the coupled 3S,-*D, channel. In order to
check the possible existence of any hidden systematic errors
in all these situations, we also compared the results with the
phase-shifts calculated by completely different methods, such

TABLE I

Phase Shifts for the 'S,, 'P,, ', and 35,-°D, Reid Soft-Core
Potentials for Different N and at Different Energies

E.= Potential N=2 N=4 N==6 N=28 N=10
12 'S (&) 0.3244 0.7665 0.8557 (.8604 (.8606
P () 0.0140 00294 —-0.0330 -00332 -0.0332

'D (8 0.0094 0.0112 0.0113 0.0113 0.0183

3§D (&) 0.8131 1.3450 1.4217 1.4262 1.4262

3§30 (&) —0.0686 —0.0510 —0.0504 —0.0501 -0.0501

382D () 0.1192 (.0403 0.0328 0.0318 G.0318

48 1S (&) —{1.4385 0.3241 0.4341 0.4400 0.4402
'P(8) —0.1241 —0.1878 —0.1899 —0.1896 —0.1896

'D (&) 0.0691 0.0633 0.0610 0.0602 0.0599

383D (&) 0.4347 0.6950 0.7438 0.7485 0.7485

8D (&) —02622 —02215 -02150 -02153 -0.2150

5D (g) ¢.1104 0.0730 0.0583 0.0584 0.0583

104 'S (&) 1.4652 —0.9166 0.0515 0.0796 0.0804
'P(8) —05148 —04496 —-04532 04563 —04567

'D (&) 0.3628 0.1181 0.1249 0.1249 (.1249

353D (&) 0.2415 0.2417 0.2962 0.2990 0.2990

-0 (&) —03431 —03700 —0.3406 —03412 -0.3413

35-D (g)) 0.0133 0.1296 0.1005 0.1017 0.1018

176 'S (& 1.0134 00234 02099 -02161 -02162
'P (&) —1.4466 —0.6806 —0.7077 -—0.7087 -—0.7079

D (&) 1.4872 0.1595 0.1677 0.1651 0.1647

$-D (&) 0.2083 —0.1151 —-0.0465 -—0.0437 -0.0437

S0 (&) —037T17  —04815 04390 —04344 -04338

$-D (g) —0.0939 0.1723 0.1481 0.1492 0.1494




206 DE ARAUIOQ, ADHIKARI, AND TOMIO

1.0 T T T T T T T T
..... N (a)
_— N=2
E K
= 0.0 ’
L N=4.5.....EXACT
W
o
[{s]
o
RS Y]
8
+ H
@ i
o i
-2.0 B
_30 1 1 1 1 1 1 1 1
Q 1 2 3 4 5 B 7 ]

p(fm™)

FIG. 1.
the converged result.

as by direct matrix inversion or by iteration whenever available
[4, 5, 8, 16, 17, 20]. The agreement between these results and
the present results assured us of the absence of such errors.
The coupled 35,—°D, channel is very interesting and deserves
special attention because of the presence of the deuteron in this
channel. It is interesting to exhibit the convergence in this
channel diagramatically for small N. In Fig. | we plot the real
and imaginary parts of the off-shell ¢ matrix fy (0.6 fm™', p;
48 MeV) versus p for various N. In Fig. 2 we plot the real and
imaginary parts of the off-shell  matrix ¢, (1.46 fm™', p; 100
MeV) versus p for various N. The convergence is good in both
cases. We find in all cases that for small N the convergence is
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The (a) real and the (b) imaginary parts of the off-shell 1 matrix elements ty (0.06 fm', p; 48 MeV) versus p for various N. The full line denotes

smooth and rapid. It is better than the convergence obtained
previously with separable expansions or degenerate kernel
method for the SRSC potential [8, 17] or similar realistic poten-
tials for this channel.

In straightforward applications of Fredhelm theory to the
numerical solution of the Lippmann—-Schwinger equation, the
integral equation is basically transtormed into a matrix equation
which is then solved by matrix inversion, iteration, or otherwise.
The infinite integral in this equation in momentum space is
usually transformed into a discrete sum, In order to achieve a
precision comparable to that of the present method one requires
about 100 momentum mesh points [21]. That procedure in-
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converged result. °
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FIG. 3. The deuteron wave-functions u(r) (for L = 0) and w(r} (for L =
2) versus r for various N. The full line denotes the converged result.

volves handling 100 X 100 matrices in momentum space. Simi-
lar precision is achieved in the present method via matrices of
much smaller dimension.

Finally, we use the present method for calculating the deu-
teron bound state with the SRSC *S,-’D, potential [17]. From
the vanishing of the determinant of the matrix J~! we found
the binding energy in the 35,—°D, channel to be 2.2298 MeV.
We also calculated the asymptotic D state to S state ratio for
the deuteron wave function defined by

)
= lim—. 472
M kLiB o (4.2)

We found the converged result for n, for N > 8 to be 0.02634.
These values agree with the exact calculation of the deuteron
bound state for this potential [17]. In Fig. 3 we exhibit the
configuration space deuteron wave-functions u(r) (for L = 0)
and w(r) (for L = 2) versus r for various N, The convergence
of the wave-function is good in both cases. The function u(r)
converges to the exact result for N' = 6, and the function w(r)
converges 1o the exact result for N = 8.

Y. SUMMARY

We have applied for the first time the complex Kohn v.p.
for the solution of the LS equation for nucleon—nucleon scatter-
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ing and the deuteron bound-state problem with the Reid soft-
core potentials in several angular momentum channels, includ-
ing the *§,—°D, channel. We calculated the scattering phase-
shifts, off-shell ¢ matrix elements, the deuteron wave functions,
and the deuteron I7 state to S state ratio. In all cases the conver-
gence was very good and better than that obtained with the
Schwinger v.p. for the same problem. This shows that the
complex Kohn v.p. should be an efficient method for sclving
other few-nucleon problems including the trinucleon problem.
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Desenvolvimento Cientifico e Tecnologico (CNPq} of Brasil.
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